×
About 889 results

ALLMedicine™ Dystonias Center

Research & Reviews  441 results

HOPS-associated neurological disorders (HOPSANDs): linking endolysosomal dysfunction to...
https://doi.org/10.1093/brain/awab161
Brain : a Journal of Neurology; Monfrini E, Zech M et. al.

Apr 19th, 2021 - The "homotypic fusion and protein sorting" (HOPS) complex is the structural bridge necessary for the fusion of late endosomes and autophagosomes with lysosomes. Recent publications linked mutations in genes encoding HOPS complex proteins with the ...

Alteration of the cholinergic system and motor deficits in cholinergic neuron-specific ...
https://doi.org/10.1016/j.nbd.2021.105342
Neurobiology of Disease; Liu Y, Xing H et. al.

Mar 24th, 2021 - Dystonia is a neurological movement disorder characterized by sustained or intermittent muscle contractions, repetitive movement, and sometimes abnormal postures. DYT1 dystonia is one of the most common genetic dystonias, and most patients carry h...

Mechanisms of pallidal deep brain stimulation: Alteration of cortico-striatal synaptic ...
https://doi.org/10.1016/j.nbd.2021.105341
Neurobiology of Disease; Heerdegen M, Zwar M et. al.

Mar 23rd, 2021 - Pallidal deep brain stimulation (DBS) is an important option for patients with severe dystonias, which are thought to arise from a disturbance in striatal control of the globus pallidus internus (GPi). The mechanisms of GPi-DBS are far from unders...

Evidence of rehabilitation therapy in task-specific focal dystonia: a systematic review.
https://doi.org/10.23736/S1973-9087.21.06677-6
European Journal of Physical and Rehabilitation Medicine; Hautekiet A, Raes K et. al.

Feb 23rd, 2021 - Task-specific dystonias are primary focal dystonias characterized by excessive muscle contractions producing abnormal postures during selective motor activities that often involve highly skilled, repetitive movements. Based on the idea of excessiv...

Genetic Dystonias: Update on Classification and New Genetic Discoveries.
https://doi.org/10.1007/s11910-021-01095-1 10.1002/mds.25475 10.1002/mds.26527 10.1007/s11910-017-0735-0 10.1016/j.celrep.2018.09.067 10.1038/ng.3740 10.1016/j.ajhg.2016.10.010 10.1016/j.parkreldis.2020.06.002 10.1186/s12883-020-01798-x 10.1016/j.parkreldis.2018.08.021 10.1038/s10038-019-0625-1 10.1016/j.parkreldis.2018.09.020 10.1212/WNL.0000000000007469 10.1002/mds.27771 10.3389/fneur.2019.00729 10.1007/s11910-019-1007-y 10.1016/j.ajhg.2017.11.013 10.1016/j.parkreldis.2018.03.022 10.1002/mdc3.12862 10.1091/mbc.E13-08-0447 10.1038/srep25834 10.1093/hmg/ddx133 10.1016/j.bpj.2012.11.002 10.1016/j.neuron.2007.01.011 10.1016/j.ajhg.2015.02.007 10.1002/mds.26634 10.1016/j.ejpn.2016.10.001 10.1002/mds.27442 10.1016/j.nbd.2019.104529 10.1371/journal.pgen.1006815 10.1016/j.ajhg.2015.04.008 10.1016/j.parkreldis.2018.12.001 10.1016/j.parkreldis.2019.01.004 10.1016/j.parkreldis.2020.07.026 10.1038/nrneurol.2015.86 10.1016/j.ajhg.2017.01.002 10.1136/jmedgenet-2017-104875 10.1038/s41431-018-0237-9 10.1002/ana.25048 10.1056/NEJMoa1207281 10.1007/s10545-015-9897-6 10.1002/jmd2.12030 10.1016/j.jns.2017.06.034 10.1136/jnnp-2014-309106 10.1016/j.ajhg.2016.06.026 10.1212/WNL.0000000000005869 10.1016/j.parkreldis.2018.12.031 10.1016/j.ajhg.2018.07.006 10.1016/j.parkreldis.2020.03.030 10.1016/j.parkreldis.2019.09.020 10.1016/j.parkreldis.2019.01.017 10.1007/s11033-019-05109-7 10.1016/j.devcel.2017.06.009 10.1038/ng.712 10.1016/j.ajhg.2017.05.006 10.1002/ajmg.a.61731 10.1002/mds.26198 10.1002/mds.25542 10.1016/j.parkreldis.2019.04.003 10.1016/j.ajhg.2015.04.010 10.1007/s00415-016-8046-y 10.1093/hmg/ddu513 10.1093/hmg/ddv255 10.1016/j.ajhg.2019.03.005 10.1016/j.parkreldis.2019.01.020 10.1016/j.parkreldis.2018.02.012 10.1002/mds.26808 10.1002/mds.27694 10.1001/archneurol.2012.54 10.1212/WNL.0000000000002058 10.1007/s10048-017-0510-z 10.1016/j.parkreldis.2017.05.004 10.1002/mds.26494 10.1016/j.ejpn.2017.12.009 10.1002/mdc3.12747 10.1016/j.parkreldis.2020.05.009 10.1111/dmcn.14666 10.1016/j.braindev.2018.01.002 10.1002/mds.27319 10.1016/j.ajhg.2007.12.022 10.1016/j.parkreldis.2019.09.015 10.1002/ana.25751 10.1093/brain/awv317 10.1093/brain/awv310 10.1002/mds.27274 10.1093/hmg/ddx430 10.1016/j.jns.2020.116909 10.1111/dmcn.13939 10.1002/mgg3.411 10.1016/j.parkreldis.2018.11.019 10.1212/NXG.0000000000000143 10.1002/ajmg.a.40472 10.1002/mds.27708 10.1212/NXG.0000000000000106 10.1002/ana.24580 10.1002/humu.23547 10.1016/j.ajhg.2017.11.008 10.1016/j.parkreldis.2020.06.028 10.1016/j.neuron.2016.11.012 10.1016/j.parkreldis.2019.11.004 10.1016/j.parkreldis.2020.04.003
Current Neurology and Neuroscience Reports; Keller Sarmiento IJ, Mencacci NE

Feb 10th, 2021 - Since the advent of next-generation sequencing, the number of genes associated with dystonia has been growing exponentially. We provide here a comprehensive review of the latest genetic discoveries in the field of dystonia and discuss how the grow...

see more →

Guidelines  1 results

EFNS guidelines on diagnosis and treatment of primary dystonias.
https://doi.org/10.1111/j.1468-1331.2010.03042.x
European Journal of Neurology; Albanese A, Asmus F et. al.

May 20th, 2010 - to provide a revised version of earlier guidelines published in 2006. primary dystonias are chronic and often disabling conditions with a widespread spectrum mainly in young people. primary dystonias are classified as pure dystonia, dystonia plus ...

see more →

Clinicaltrials.gov  443 results

HOPS-associated neurological disorders (HOPSANDs): linking endolysosomal dysfunction to...
https://doi.org/10.1093/brain/awab161
Brain : a Journal of Neurology; Monfrini E, Zech M et. al.

Apr 19th, 2021 - The "homotypic fusion and protein sorting" (HOPS) complex is the structural bridge necessary for the fusion of late endosomes and autophagosomes with lysosomes. Recent publications linked mutations in genes encoding HOPS complex proteins with the ...

Alteration of the cholinergic system and motor deficits in cholinergic neuron-specific ...
https://doi.org/10.1016/j.nbd.2021.105342
Neurobiology of Disease; Liu Y, Xing H et. al.

Mar 24th, 2021 - Dystonia is a neurological movement disorder characterized by sustained or intermittent muscle contractions, repetitive movement, and sometimes abnormal postures. DYT1 dystonia is one of the most common genetic dystonias, and most patients carry h...

Mechanisms of pallidal deep brain stimulation: Alteration of cortico-striatal synaptic ...
https://doi.org/10.1016/j.nbd.2021.105341
Neurobiology of Disease; Heerdegen M, Zwar M et. al.

Mar 23rd, 2021 - Pallidal deep brain stimulation (DBS) is an important option for patients with severe dystonias, which are thought to arise from a disturbance in striatal control of the globus pallidus internus (GPi). The mechanisms of GPi-DBS are far from unders...

Evidence of rehabilitation therapy in task-specific focal dystonia: a systematic review.
https://doi.org/10.23736/S1973-9087.21.06677-6
European Journal of Physical and Rehabilitation Medicine; Hautekiet A, Raes K et. al.

Feb 23rd, 2021 - Task-specific dystonias are primary focal dystonias characterized by excessive muscle contractions producing abnormal postures during selective motor activities that often involve highly skilled, repetitive movements. Based on the idea of excessiv...

Genetic Dystonias: Update on Classification and New Genetic Discoveries.
https://doi.org/10.1007/s11910-021-01095-1 10.1002/mds.25475 10.1002/mds.26527 10.1007/s11910-017-0735-0 10.1016/j.celrep.2018.09.067 10.1038/ng.3740 10.1016/j.ajhg.2016.10.010 10.1016/j.parkreldis.2020.06.002 10.1186/s12883-020-01798-x 10.1016/j.parkreldis.2018.08.021 10.1038/s10038-019-0625-1 10.1016/j.parkreldis.2018.09.020 10.1212/WNL.0000000000007469 10.1002/mds.27771 10.3389/fneur.2019.00729 10.1007/s11910-019-1007-y 10.1016/j.ajhg.2017.11.013 10.1016/j.parkreldis.2018.03.022 10.1002/mdc3.12862 10.1091/mbc.E13-08-0447 10.1038/srep25834 10.1093/hmg/ddx133 10.1016/j.bpj.2012.11.002 10.1016/j.neuron.2007.01.011 10.1016/j.ajhg.2015.02.007 10.1002/mds.26634 10.1016/j.ejpn.2016.10.001 10.1002/mds.27442 10.1016/j.nbd.2019.104529 10.1371/journal.pgen.1006815 10.1016/j.ajhg.2015.04.008 10.1016/j.parkreldis.2018.12.001 10.1016/j.parkreldis.2019.01.004 10.1016/j.parkreldis.2020.07.026 10.1038/nrneurol.2015.86 10.1016/j.ajhg.2017.01.002 10.1136/jmedgenet-2017-104875 10.1038/s41431-018-0237-9 10.1002/ana.25048 10.1056/NEJMoa1207281 10.1007/s10545-015-9897-6 10.1002/jmd2.12030 10.1016/j.jns.2017.06.034 10.1136/jnnp-2014-309106 10.1016/j.ajhg.2016.06.026 10.1212/WNL.0000000000005869 10.1016/j.parkreldis.2018.12.031 10.1016/j.ajhg.2018.07.006 10.1016/j.parkreldis.2020.03.030 10.1016/j.parkreldis.2019.09.020 10.1016/j.parkreldis.2019.01.017 10.1007/s11033-019-05109-7 10.1016/j.devcel.2017.06.009 10.1038/ng.712 10.1016/j.ajhg.2017.05.006 10.1002/ajmg.a.61731 10.1002/mds.26198 10.1002/mds.25542 10.1016/j.parkreldis.2019.04.003 10.1016/j.ajhg.2015.04.010 10.1007/s00415-016-8046-y 10.1093/hmg/ddu513 10.1093/hmg/ddv255 10.1016/j.ajhg.2019.03.005 10.1016/j.parkreldis.2019.01.020 10.1016/j.parkreldis.2018.02.012 10.1002/mds.26808 10.1002/mds.27694 10.1001/archneurol.2012.54 10.1212/WNL.0000000000002058 10.1007/s10048-017-0510-z 10.1016/j.parkreldis.2017.05.004 10.1002/mds.26494 10.1016/j.ejpn.2017.12.009 10.1002/mdc3.12747 10.1016/j.parkreldis.2020.05.009 10.1111/dmcn.14666 10.1016/j.braindev.2018.01.002 10.1002/mds.27319 10.1016/j.ajhg.2007.12.022 10.1016/j.parkreldis.2019.09.015 10.1002/ana.25751 10.1093/brain/awv317 10.1093/brain/awv310 10.1002/mds.27274 10.1093/hmg/ddx430 10.1016/j.jns.2020.116909 10.1111/dmcn.13939 10.1002/mgg3.411 10.1016/j.parkreldis.2018.11.019 10.1212/NXG.0000000000000143 10.1002/ajmg.a.40472 10.1002/mds.27708 10.1212/NXG.0000000000000106 10.1002/ana.24580 10.1002/humu.23547 10.1016/j.ajhg.2017.11.008 10.1016/j.parkreldis.2020.06.028 10.1016/j.neuron.2016.11.012 10.1016/j.parkreldis.2019.11.004 10.1016/j.parkreldis.2020.04.003
Current Neurology and Neuroscience Reports; Keller Sarmiento IJ, Mencacci NE

Feb 10th, 2021 - Since the advent of next-generation sequencing, the number of genes associated with dystonia has been growing exponentially. We provide here a comprehensive review of the latest genetic discoveries in the field of dystonia and discuss how the grow...

see more →

News  4 results

Fast Five Quiz: Schizophrenia Management in Adults
https://reference.medscape.com/viewarticle/933512_6

Aug 10th, 2020 - First-generation antipsychotics have a high rate of extrapyramidal side effects, including rigidity, bradykinesia, dystonias, tremor, and akathisia. Tardive dyskinesia —involuntary movements of the face and extremities — is another adverse effect ...

Why Do Patients Discontinue Botulinum Toxin for Dystonia?
https://www.mdedge.com/neurology/article/139014/movement-disorders/why-do-patients-discontinue-botulinum-toxin-dystonia

May 24th, 2017 - Cynthia L. Comella, MD [[{"attributes":{},"fields":{}}]] MIAMI—Botulinum toxin injection is the first-line treatment for most focal dystonias.

Noncosmetic uses of botulinum toxin in otolaryngology
https://www.mdedge.com/ccjm/article/103773/drug-therapy/noncosmetic-uses-botulinum-toxin-otolaryngology?channel=133
Michael S. Benninger, MD, Libby J. Smith, DO, FAOCO

Nov 1st, 2015 - Botulinum toxin is commonly used to treat movement disorders of the head and neck. It was first used to treat focal eye dystonia (blepharospasm) and laryngeal dystonia (spasmodic dysphonia) and is now also used for other head and neck dystonias, m.

Surgical considerations for tremor and dystonia
https://www.mdedge.com/ccjm/article/95792/surgical-considerations-tremor-and-dystonia/page/0/1

Jul 1st, 2012 - Patient selection Appropriate patients for DBS include those with an unequivocal diagnosis of dystonia and significant disability. Etiology and type of dystonia should also be considered.

see more →